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LE’ITER TO THE EDITOR 

Universal connections, gauge anomalies and Lie group 
cohomology 

R F Picken 
Freie Universitat Berlin, Institut fur Theorie der Elementarteilchen, FB 20, WE 4, 
Arnimallee 14, D-1000 Berlin 33, West Germany 

Received 1 November 1985 

Abstract. The geometric interpretation, due to Thierry-Mieg, of the ghost field as certain 
components of an Ehresmann connection on the total space of a principal bundle, and of 
the BRS transformation as part of the exterior derivative on the total space, is discussed 
and amended to incorporate the spacetime dependence of the ghost field. Using this 
interpretation it is shown that non-trivial solutions to the Wess-Zumino consistency 
condition for gauge anomalies are related to non-trivial de Rham cohomology of the Lie 
group. 

The algebraic approach to the study of anomalies (Baulieu 1984, Bonora and Cotta- 
Ramusino 1983, Stora 1983, Zumino 1983) has proved most successful in obtaining 
the functional form of non-Abelian gauge anomalies (up to a normalisation constant) 
by solving a certain linear condition, which anomalies must satisfy, known as the 
Wess-Zumino consistency condition. The solution makes use of invariant polynomial 
expressions in the fields, of form degree two greater than the dimensionality of 
spacetime, and the anomalies are obtained by analysing the algebraic properties of a 
double chain complex, consisting of polynomials in the Yang-Mills potential and field 
strength, A and F, the ghost field ,y and its exterior derivative, operated on by the 
exterior derivative d and the BRS operator s. See Dubois-Violette et a1 (1985a, b) for 
a thorough analysis of the algebra involved. The cohomological meaning of this 
approach was clarified by Bonora and Cotta-Ramusino (1983), who introduced the 
notion of ‘local cohomology’: the (integrated) anomaly is a local expression in the 
fields, but arises as s of a non-local expression. Because of this, s of the anomaly is 
zero (the Wess-Zumino condition) but, on the other hand, the anomaly is essentially 
trivial if it may be written as s of a local expression. Non-trivial anomalies are thus 
non-trivial ‘local’ s-cocycles. 

The geometric interpretation of these algebraic manipulations has been less clear. 
The first problem is to explain where the extra two dimensions, needed to define the 
invariant polynomial used at the start of the programme, come from and why the final 
expression for the anomaly has no support in these extra dimensions. The most 
convincing approach to this problem is to consider forms defined on the total space 
of an appropriate fibre bundle, associated with the Yang-Mills theory under consider- 
ation, rather than on spacetime itself, being the base space of the fibre bundle (Thierry- 
Mieg 1980a, b, Cotta-Ramusino 1985). The second problem is to clarify the nature of 
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the ghost field and the BRS operator. In the Thierry-Mieg (1980a, b) approach the 
ghost is interpreted as the vertical component of the full connection (i.e. the Ehresmann 
connection, which is a form on the total space of the bundle-see below), whilst the 
BRS operator is the vertical part of the exterior derivative. This approach has been 
criticised (Bonora and Cotta-Ramusino 1983, Quir6s et al 1981) on the grounds that 
the vertical part of the connection has no spacetime dependence, and the preferred 
approach has been to regard the ghost as the Maurer-Cartan form on the (infinite- 
dimensional) space of gauge transformations, and the BRS operator as the exterior 
derivative on this space (see also the introductory remarks in Stora (1983)). In this 
letter we wish to argue again the case for the Thierry-Mieg approach, showing that it 
leads to an extremely simple and natural framework for understanding anomalies. 

It is well known that the correct mathematical setting for describing Yang-Mills 
fields, for a given gauge group G, is the principal G-bundle (Kobayashi and Nomizu 
1963, Spivak 1979). A principal G-bundle is a quadruple (E, T, E, *), where E is the 
total space, v is the projection from E to the base space B and : E x G + E, ( p,  g) + p - g 
is a right G action on E, satisfying the conditions 

(i) ~ ( p -  g)  = v ( p )  V ~ E  E, g c  G and p a  (gk) = ( p .  g) k V p ~  E, g, k c G ;  
(ii) V x  E B, 3 a neighbourhood U of x and a diffeomorphism h: v- ' (  U) + U x G 

such that h( p )  = ( T (  p), g( p)) where g( p )  satisfies g( p k) = g(  p)&. 
A local section U is a continuous map from a neighbourhood U in B to E satisfying 

T ( u ( x ) )  = x,  for all x in U. A local section induces local coordinates on E: let { x " }  
be coordinates on U and {y"} be coordinates on G. Then we assign to a point p in 
T-'( U )  the coordinates {x", y " } ,  where { x " }  are the coordinates of v ( p )  and {y"} 
are the coordinates of g(  p ) ,  the unique element of G satisfying p = U( T (  p ) )  . g(  p ) .  

An Ehresmann connection is a g-valued 1-form w on the total space E (where 
g denotes the Lie algebra of G) satisfying: 

(i) w ( 2 )  = X, V x  E g (2 is the vector field induced by X); 
(ii) w ( R,. Y) = g-'w ( Y)g for all g E G and vectors Y on E (R,. is the action on 

vectors induced by right multiplication R,: E + E, R,( p )  = p g). 
From (i) one can show that the vertical part of w is the pullback under h of the 

Maurer-Cartan form g(y)-' dg(y) on G and thus is independent of the x coordinates. 
This feature has led to the criticism, mentioned in the introduction, of Thierry-Mieg's 
interpretation of the ghost field as the vertical part of w. 

One can obtain a g-valued 1-form A, on a neighbourhood U in the base space by 
pulling back o with a local section U. Clearly A, depends on the section chosen. The 
significance of the two conditions on w is that all 1-forms obtained in this way are 
related by gauge transformation: let U and T be two sections such that, on the overlap 
U, n U,, u ( x )  = ~ ( x )  h ( x ) .  Then 

A, = h-'A,h + h-' dh. 

See Spivak (1979) for a proof and a thorough discussion of this point of view. Thus 
w gives rise to Yang-Mills potentials A, being collections of g-valued 1-forms { A i } ,  
defined on open sets { V i }  covering B, related on the overlaps by gauge transformations. 

A vector X on E is said to be horizontal if w(X)=O. Every vector X on E 
has a unique decomposition X = X H + X V ,  where XH is horizontal and Xv is 
vertical, i.e. v*(XV)=O. We call a p-form cp horizontal if cp(X,,. . ., X,)= 
cp(Xp,. . . , X,") VX1,. . . , X, on E. 

We now proceed to show how w may be decomposed into a part 'along the section', 
which may be identified with A (we will drop the subscript referring to the section, 
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unless this causes any confusion) and a remainder x which will be identified with the 
ghost field. Firstly we choose a coordinate system on E as described above by means 
of a section, where we make the special choice of a horizontal section uH, i.e. a section 
which is such that all its tangent vectors in E are horizontal. These coordinates will 
be denoted (x, y) (for convenience we drop the indices on x.and y) and this particular 
choice has the advantage that w = ox dx + U, dy = wy dy only, as w has to annihilate 
all vectors a,. We now choose an arbitrary section U to pull back w to A. Let the 
coordinates of the section U be given by (x, s(x)) parametrised by x in the base. Then 
we calculate A = u * ( o y ( y )  dy) = w,(s(x))s‘(x) dx, where s’ is shorthand for ds“/dxw. 
Next we change coordinates on E to (x’, y’) = (x, y - s(x)) and express w in terms of 
(x’, y’): w = w, (y )  dy = oy(y’+s(x’)) dy’+w,(y’+ s(x’))s’(x’) dx’. Clearly on the sec- 
tion, where y’=O, we may identify the second term of this expression with A. The 
first term U,, dy’= wy(s(x’)) dy’ we will denote by x, the ghost field. It is important 
to observe that x is x’-dependent, avoiding the problem in the Thierry-Mieg formula- 
tion. This is related to the fact that the ghost is not ‘vertical’ (in the sense x = xy dy 
only) as dy‘= dy - s’ dx. The point to notice is that one has, a priori, two independent 
sections, one to fix convenient horizontal and vertical coordinates on E, and a separate 
one to pull back the Yang-Mills connection A. 

The key result concerning the Ehresmann connection is the Cartan-Maurer structure 
equation. Defining the curvature R as the horizontal part of &o, where 4 is the exterior 
derivative on E, i.e. R(X, Y) = &o(XH, YH) for all vectors X, Y on E, this equation 
states 

R =a, +;[U, 01. (1) 

Put slightly differently, if instead we define R by ( l ) ,  then we may deduce that R is 
horizontal. In terms of the (x, y )  coordinate system defined above, this means fl = 
0, dx dx  + Rxy dx dy +ayr dy dy = fl, dx dx only. We now express R in the primed 
coordinates induced by the choice of section U. Splitting the exterior derivative up as 
a = dx’ a,, + dy’ a,. E d + s, we have 

Rxrxr dx’ dx’ = dA + ;[A, A] 

R,,,, dx’ dy’ = SA + dX + [A, X] 

fly,,* dy’ dy’ = sx +4[x, x]. 

R,y = R, + s’Rxy + S’S’R,, 

RX,,, = a,, + s’Ryy 

R,.,, = a,. 

(2) 

(3) 

(4) 

On the other hand, being a 2-formY R transforms as a tensor and hence 

Thus R,,,, = Ry.,, = 0, the right-hand sides of (3) and (4) vanish and we regain Thierry- 
Mieg’s interpretation of the BRS operator s as part of the exterior derivative on the 
bundle (in this improved version s is not ‘along the fibre’ but ‘along the coordinates 
y”). The non-vanishing part of R, R,,,, dx‘ dx‘, may be naturally identified with the 
Yang-Mills fields strength 2-form F = u*R on the base space. 

In conclusion, we have shown how a slightly modified Thierry-Mieg approach leads 
to a natural geometric interpretation of the ghost field and the BRS operator of quantum 
field theory. We now apply this formalism to clarify the cohomological significance 
of anomalies. 
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When a classical field theory possesses a symmetry, which fails to hold after (some 
of) the fields are quantised, we speak of an anomaly. An example of a model where 
this can occur is the theory of Yang-Mills gauge fields, with group G, coupled 
gauge-invariantly to chiral fermions. The gauge invariance of the classical action 
IC’[A, $ 3  is lost when the fermions are quantised and integrated out leaving an effective 
action W [ A ] .  The statement of the anomaly is then 

s W [ A ] = ]  G ( x , A ) f O  
B 

where sW[A]  stands for the functional variation of W under an infinitesimal gauge 
transformation SA = -dX - [ A ,  x ] .  The right-hand side (the integrated anomaly) is a 
local functional of x and A, polynomial in the fields and linear in x, whereas the 
effective action is non-local in A. 

The Wess-Zumino consistency condition is obtained by applying s to both sides 
of ( 5 )  and using the fact that s2=0: 

The integrated anomaly is thus closed under the BRS operator s; if however it is locally 
s-exact, i.e. it equals s applied to a local functional, then the anomaly can be removed 
by adding a local counterterm to the effective action W [ A ] .  Thus for non-trivial 
anomalies we require 

Because of (6) and (7) a non-trivial integrated anomaly represents an s-cocycle within 
the restricted class of local functionals. This is the local cohomology introduced by 
Bonora and Cotta-Ramusino (1983). 

The integrand G(x, A )  is only defined up to the addition of an arbitrary d-exact 
form, if we make the usual assumption that B is without boundary, or that all fields 
vanish at infinity. At this level (6) and (7) take the form 

sG(x, A )  + dH(X, A )  = 0 

G(x, A )  f dK(x,  A )  + sC(A) .  

(8) 

( 9 )  

If spacetime is assumed to have four dimensions, solutions to (8) and (9) may be 
obtained by finding 5-forms G 5 ( w ,  n) on E, polynomial in w and a, which are non-trivial 
&cocycles. This is seen by expressing G 5 ( w ,  C l )  in terms of the (x’, y ’ )  basis described 
above and expanding ‘in powers of X I  

G5(0, ~ ) = G , ( A + x , ~ ) = G : ( A , x , ~ ) + G : ( A , x , R ) +  * + G ~ ( X )  (10) 

where the lower index refers to the dx’ form degree (spacetime form degree) and the 
upper index refers to the dy’ form degree (ghost number). Equations (8) and (9) are 
regained on imposing the non-trivial cocycle condition 

(11) 5G5 = (d+s)G5 = 0 

G5 f aG, (12) 
and identifying G: in the expansion of G5 with the anomaly G. 
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A solution to ( 1  1)  and (12) is provided by the Chem-Simons form Qs( w, 0) defined 
by (see Eguchi et a1 1980) 

where w,  = tw, R, = t dw +Stl [w,  U ]  and P (  a ,  e ,  ) is an invariant, symmetric, trilinear 
form on g. This is because d Q  = P(R, R, a) vanishes, being a horizontal 6-form, as 
there are only four horizontal dimensions available (Thierry-Mieg 1984,1985). Further- 
more, Qs is not &exact, because the term of maximal ghost number in the expansion 
of Q s ,  namely 

Q: = P(X, [x ,  XI, [x, XI)  

P(X, x, [,x, X I )  

(14) 

would have to equal sG: for some ghostly 4-form G:. The only candidate for G: is 

which vanishes identically due to symmetrisation/antisymmetrisation. 
It should be pointed out that the above is not in disagreement with Dubois-Violette 

er a1 (1985a, b) where it was found that the 2 cohomology is trivial. The point is that 
they deal with a differentiaLalgebra without any further horizontality or dimensionality 
considerations. Thus in their formalism 8Qs = P(R, R, 0) # 0 and therefore Qs,  not 
being closed, cannot be a cocycle. 

Secondly we remark that, for the more general case of ‘anomalies’ with ghost 
number greater than one, and for arbitrary spacetime dimension, there may be several 
solutions to ( 1  1 )  and (12), obtained by forming products of Chern-Simons forms and 
invariant polynomials of R (Thierry-Mieg 1984). In our case, if we assume that G is 
simple, Qs is the only solution, because combinations like Q3(o, fi)P,(n) and 
Q1(w)P4(fl, fi) necessarily vanish. 

We now ask how this non-trivial de Rham cohomology H s ( E )  # 0 arises. A hint 
is provided by noticing that E is the (twisted) product of B and G, and that H’(G) # 0 
if G admits a non-vanishing invariant, symmetric, trilinear form P( a ,  e ,  ). This last 
fact may be proved directly or can be established by comparing a table of the orders 
of non-trivial Casimir elements for the simple groups (see e.g. CvitanoviE 1984), which 
are in one-to-one correspondence with invariant, symmetric, multilinear forms, and a 
table of the cohomology of the simple groups (Iyanaga and Kawada 1977): each order 
n Casimir element corresponds to non-trivial (2n - 1) cohomology. 

A direct way to establish this connection with Hs(G) is to go to a gauge where 
A = 0, by using a horizontal section to pull back w. Then w = w, (y )  dy = x = g-’ dg  
and Qs(w, R)  = Qs(x)  = P ( x ,  [x, XI, [x, XI), which represents, as we have seen before 
in equation (14), non-trivial cohomology on G, being a cocycle with respect to s, the 
exterior derivative on G. 

Thus one achieves a rather roundabout link with the ‘index theorem approach’ to 
gauge anomalies, where the anomaly is related to the topology &(G) 2 Z (Sumitani 
1984, Alvarez-GaumC and Ginsparg 1984). A quick survey of the homotopy groups 
of simple Lie groups (Iyanaga and Kawada 1977) shows that this is equivalent to 
Hs(G)  # 0. 

In conclusion, the method we have described shows clearly the direct relationship 
between gauge anomalies and the cohomology of G, whilst at the same time providing 
a natural geometric interpretation for the ghost and the BRS operator, without the 
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drawback of the Thierry-Mieg (1980a, b) approach, that the ghost is not spacetime 
dependent. The topology of G also enters in a crucial way in the ‘index theorem 
approach’, which possesses the advantage that it derives the correct normalisation as 
well as the functional form of anomalies. This approach however requires much more 
complicated mathematical machinery. 
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